12,597 research outputs found

    Increasing returns to scale and international diffusion of technology: an empirical study for Brazil (1976-2000)

    Get PDF
    This article aims at exploring the empirical evidence regarding the effects of increasing returns to scale and international technological diffusion on the Brazilian manufacturing industry. Our departure point is a Kaldorian-type theoretical model that provides not only the positive effects of scale but also of diffusion on industrial performance. We use Vector Auto Regressive (VAR) for testing the model. VAR will estimate the coefficients related to industrial output, labor productivity, exports and the technological gap between the United States and Brazil. This technique also provides simulations for the short-term and long-term trajectories under exogenous shocks. The observations are on a three-month period basis and the sampling period runs from the second half of 1976 to the second half of 2000. The conclusion highlights both evidences of increasing returns on the Brazilian industry that faces, however, some structural constraints. Besides, the model also reveals Brazil's difficulties to catch uptechnological gap; increasing returns to scale; economic growth; Brazil

    Grafting melons onto potential cucumis spp. rootstocks

    Get PDF
    Cucumís melo is an economically importar]t crop. Its culture is hampered by differen t types of soil stresses. Grafting melons onto different resistant cucurbits belonging to the genera, Cucurbíta, Lagenaría, Luffa, etc. have been successfully used to avoid these problems. However, me Ion quality has been nega.tively modified as a consequence of grafting. In general, variation in fruit shape, seed cavity and sugar content have been observed. The use of rootstocks more genetically c\oser to the melon scions could be useful to obtain fru i ts with better quality from melon grafted plantsPostprint (published version

    Experimental evidence of solitary wave interaction in Hertzian chains

    Full text link
    We study experimentally the interaction between two solitary waves that approach one to another in a linear chain of spheres interacting via the Hertz potential. When these counter propagating waves collide, they cross each other and a phase shift respect to the noninteracting waves is introduced, as a result of the nonlinear interaction potential. This observation is well reproduced by our numerical simulations and it is shown to be independent of viscoelastic dissipation at the beads contact. In addition, when the collision of equal amplitude and synchronized counter propagating waves takes place, we observe that two secondary solitary waves emerge from the interacting region. The amplitude of secondary solitary waves is proportional to the amplitude of incident waves. However, secondary solitary waves are stronger when the collision occurs at the middle contact in chains with even number of beads. Although numerical simulations correctly predict the existence of these waves, experiments show that their respective amplitude are significantly larger than predicted. We attribute this discrepancy to the rolling friction at the beads contacts during solitary wave propagation

    Dynamic Field Experiments in Development Economics: Risk Valuation in Morocco, Kenya, and Peru

    Get PDF
    The effective design and implementation of interventions that reduce vulnerability and poverty require a solid understanding of underlying poverty dynamics and associated behavioral responses. Stochastic and dynamic benefit streams can make it difficult for the poor to learn the value of such interventions to them. We explore how dynamic field experiments can help (i) intended beneficiaries to learn and understand these complicated benefit streams, and (ii) researchers to better understand how the poor respond to risk when faced with nonlinear welfare dynamics. We discuss and analyze dynamic risk valuation experiments in Morocco, Peru, and Kenya.poverty, risk and uncertainty, dynamics, experiments, Kenya, Morocco, Peru, International Development, Research Methods/ Statistical Methods, Risk and Uncertainty,

    A new two-sphere singularity in general relativity

    Get PDF
    The Florides solution, proposed as an alternative to the interior Schwarzschild solution, represents a static and spherically symmetric geometry with vanishing radial stresses. It is regular at the center, and is matched to an exterior Schwarzschild solution. The specific case of a constant energy density has been interpreted as the field inside an Einstein cluster. In this work, we are interested in analyzing the geometry throughout the permitted range of the radial coordinate without matching it to the Schwarzschild exterior spacetime at some constant radius hypersurface. We find an interesting picture, namely, the solution represents a three-sphere, whose equatorial two-sphere is singular, in the sense that the curvature invariants and the tangential pressure diverge. As far as we know, such singularities have not been discussed before. In the presence of a large negative cosmological constant (anti-de Sitter) the singularity is removed.Comment: 17 pages, 3 figure

    Young diagrams and N-soliton solutions of the KP equation

    Full text link
    We consider NN-soliton solutions of the KP equation, (-4u_t+u_{xxx}+6uu_x)_x+3u_{yy}=0 . An NN-soliton solution is a solution u(x,y,t)u(x,y,t) which has the same set of NN line soliton solutions in both asymptotics yy\to\infty and yy\to -\infty. The NN-soliton solutions include all possible resonant interactions among those line solitons. We then classify those NN-soliton solutions by defining a pair of NN-numbers (n+,n)({\bf n}^+,{\bf n}^-) with n±=(n1±,...,nN±),nj±{1,...,2N}{\bf n}^{\pm}=(n_1^{\pm},...,n_N^{\pm}), n_j^{\pm}\in\{1,...,2N\}, which labels NN line solitons in the solution. The classification is related to the Schubert decomposition of the Grassmann manifolds Gr(N,2N)(N,2N), where the solution of the KP equation is defined as a torus orbit. Then the interaction pattern of NN-soliton solution can be described by the pair of Young diagrams associated with (n+,n)({\bf n}^+,{\bf n}^-). We also show that NN-soliton solutions of the KdV equation obtained by the constraint u/y=0\partial u/\partial y=0 cannot have resonant interaction.Comment: 22 pages, 5 figures, some minor corrections and added one section on the KdV N-soliton solution

    Cardiovascular system in larval zebrafish responds to developmental hypoxia in a family specific manner

    Get PDF
    BACKGROUND: Genetic and environmental variation are both known to influence development. Evolution of a developmental response that is optimized to the environment (adaptive plasticity) requires the existence of genetic variation for that developmental response. In complex traits composed of integrated sets of subsidiary traits, the adaptive process may be slowed by the existence of multiple possible integrated responses. This study tests for family (sibship) specific differences in plastic response to hypoxia in an integrated set of cardiovascular traits in zebrafish. RESULTS: Cardiac output, which is the integrated product of several subsidiary traits, varied highly significantly between families, and families differed significantly in the degree and direction of response to developmental oxygen level. The cardiac output response to oxygen environment was entirely family specific with no significant overall trend due to oxygen level. Constituent physiological variables that contribute to cardiac output all showed significant family specific response to hypoxia. Traits that were not directly related to cardiac output, such as arterial and venous diameter, and red blood cell velocities did not respond to hypoxia in a family specific manner. CONCLUSION: Zebrafish families vary in their plastic response to hypoxia. Genetic variation in plastic response to hypoxia may therefore provide the basic ingredient for adaptation to a variable environment. Considerable variation in the degree of familial response to hypoxia exists between different cardiovascular traits that may contribute to cardiac output. It is possible that the integration of several subsidiary traits into cardiac output allows the maintenance of genetic variance in cardiac response

    Directed Molecular Stacking for Engineered Fluorescent Three-Dimensional Reduced Graphene Oxide and Coronene Frameworks

    Get PDF
    [EN] Three‐dimensional fluorescent graphene frameworks with controlled porous morphologies are of significant importance for practical applications reliant on controlled structural and electronic properties, such as organic electronics and photochemistry. Here we report a synthetically accessible approach concerning directed aromatic stacking interactions to give rise to new fluorogenic 3D frameworks with tuneable porosities achieved through molecular variations. The binding interactions between the graphene‐like domains present in the in situ‐formed reduced graphene oxide (rGO) with functional porphyrin molecules lead to new hybrids via an unprecedented solvothermal reaction. Functional free‐base porphyrins featuring perfluorinated aryl groups or hexyl chains at their meso‐ and β‐positions were employed in turn to act as directing entities for the assembly of new graphene‐based and foam‐like frameworks and of their corresponding coronene‐based hybrids. Investigations in the dispersed phase and in thin‐film by XPS, SEM and FLIM shed light onto the nature of the aromatic stacking within functional rGO frameworks (denoted rGOFs) which was then modelled semi‐empirically and by DFT calculations. The pore sizes of the new emerging reduced graphene oxide hybrids are tuneable at the molecular level and mediated by the bonding forces with the functional porphyrins acting as the “molecular glue”. Single crystal X‐ray crystallography described the stacking of a perfluorinated porphyrin with coronene, which can be employed as a molecular model for understanding the local aromatic stacking order and charge transfer interactions within these rGOFs for the first time. This opens up a new route to controllable 3D framework morphologies and pore size from the Ångstrom to the micrometre scale. Theoretical modelling showed that the porosity of these materials is mainly due to the controlled inter‐planar distance between the rGO, coronene or graphene sheets. The host‐guest chemistry involves the porphyrins acting as guests held through π‐π stacking, as demonstrated by XPS. The objective of this study is also to shed light into the fundamental localised electronic and energy transfer properties in these new molecularly engineered porous and fluorogenic architectures, aiming in turn to understand how functional porphyrins may exert stacking control over the notoriously disordered local structure present in porous reduced graphene oxide fragments. By tuning the porosity and the distance between the graphene sheets using aromatic stacking with porphyrins, it is also possible to tune the electronic structure of the final nanohybrid material, as indicated by FLIM experiments on thin films. Such nanohybrids with highly controlled pores dimensions and morphologies open the way to new design and assembly of storage devices and applications incorporating π‐conjugated molecules and materials and their π‐stacks may be relevant towards selective separation membranes, water purification and biosensing applications.S.I.P. and S.W.B. thank The Royal Society and STFC for funding. B.Y.M. thanks the University of Bath for a studentship (ORS). D.G.C. thanks the Fundación General CSIC for funding (ComFuturo Program). Dr. Jose A. Ribeiro Martins, Professors Jeremy K. M. Sanders and Paul Raithby are acknowledged for training, helpful discussions and porphyrin supramolecular chemistry. The S.I.P. group thanks the EPSRC for funding to the Centre of Graphene Science (EP/K017160/1) and to the Centre for Doctoral Training in Sustainable Chemical Technologies (EP/L016354/1). The authors thank EPSRC National Service for Mass Spectrometry at Swansea and EPSRC National Service for Crystallography at Southampton for data collection. The authors also acknowledge the ERC for the Consolidator Grant O2SENSE (617107, 2014–2019)

    The role of thermal niche selection in maintenance of a colour polymorphism in redback salamanders (Plethodon cinereus)

    Get PDF
    BACKGROUND: In eastern North America two common colour morphs exist in most populations of redback salamanders (Plethodon cinereus). Previous studies have indicated that the different morphs may be adapted to different thermal niches and the morphological variation has been linked to standard metabolic rate at 15°C in one population of P. cinereus. It has therefore been hypothesized that a correlated response to selection on metabolic rate across thermal niches maintains the colour polymorphism in P. cinereus. This study tests that hypothesis. RESULTS: We found that the two colour morphs do sometimes differ in their maintenance metabolic rate (MMR) profiles, but that the pattern is not consistent across populations or seasons. We also found that when MMR profiles differ between morphs those differences do not indicate that distinct niches exist. Field censuses showed that the two colour morphs are sometimes found at different substrate temperatures and that this difference is also dependent on census location and season. CONCLUSION: While these morphs sometimes differ in their maintenance energy expenditures, the differences in MMR profile in this study are not consistent with maintenance of the polymorphism via a simple correlated response to selection across multiple niches. When present, differences in MMR profile do not indicate the existence of multiple thermal niches that consistently mirror colour polymorphism. We suggest that while a relationship between colour morph and thermal niche selection appears to exist it is neither simple nor consistent
    corecore